
Constraint-Based Entity Matching

Warren Shen Xin Li AnHai Doan
University of Illinois, Urbana, USA
{whshen, xli1, anhai}@cs.uiuc.edu

Abstract
Entity matching is the problem of deciding if two given men-
tions in the data, such as “Helen Hunt” and “H. M. Hunt”,
refer to the same real-world entity. Numerous solutions have
been developed, but they have not considered in depth the
problem of exploiting integrity constraints that frequently ex-
ist in the domains. Examples of such constraints include “a
mention with age two cannot match a mention with salary
200K” and “if two paper citations match, then their authors
are likely to match in the same order”. In this paper we de-
scribe a probabilistic solution to entity matching that exploits
such constraints to improve matching accuracy. At the heart
of the solution is a generative model that takes into account
the constraints during the generation process, and provides
well-defined interpretations of the constraints. We describe a
novel combination of EM and relaxation labeling algorithms
that efficiently learns the model, thereby matching mentions
in an unsupervised way, without the need for annotated train-
ing data. Experiments on several real-world domains show
that our solution can exploit constraints to significantly im-
prove matching accuracy, by 3-12% F-1, and that the solution
scales up to large data sets.

Introduction
Entity matching decides if two given mentions in the data,
such as “Helen Hunt” and “H. M. Hunt”, refer to the same
real-world entity. This problem plays a key role in informa-
tion integration, natural language understanding, informa-
tion processing on the World-Wide Web, and on the emerg-
ing Semantic Web. As such, it has received significant atten-
tion in the AI, database, data mining, and Web communities.
Variants of the problem are known as identity uncertainty,
tuple matching, deduplication, record linkage, and mention
matching, among others.

Numerous entity matching solutions have been devel-
oped. Early solutions employ manually specified rules
(Hernandez & Stolfo 1995), while subsequent works focus
on learning the rules (Tejada, Knoblock, & Minton 2002;
Bilenko & Mooney 2003), matching strings efficiently (Co-
hen 1998; Cohen, Ravikumar, & Fienberg 2003), clustering
a large number of tuples (McCallum, Nigam, & Ungar 2000;
Cohen & Richman 2002), personal information manage-
ment (Dong et al. 2005), exploiting links (Bhattacharya &
Getoor 2004), matching mentions in text (Li, Morie, & Roth
2004), modeling matching with generative models (Pasula

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

et al. 2003; Ravikumar & Cohen 2004; Li, Morie, & Roth
2004) and with conditional random fields (Parag & Domin-
gos 2004; Wellner et al. 2004).

While significant progress has been made, virtually all of
the above works have focused on exploiting syntactic sim-
ilarities (e.g., those between two names or two addresses)
to match mentions. Real-world applications however of-
ten have many semantic integrity constraints, such as “men-
tions in the PC listing of a conference refer to different re-
searchers” and “no researcher has published more than five
papers in AAAI in a year”. The constraints can be either
learned from some external data or specified by a domain
user (Doan et al. 2003). Exploiting such constraints can
significantly improve matching accuracy, and indeed some
recent works have examined this issue (Doan et al. 2003;
Dong et al. 2005). However, they have only exploited sim-
ple pairwise hard constraints that prevent two given men-
tions from matching, in ad-hoc and often non-scalable ways.

In this paper we describe CME, an entity matching solu-
tion that exploits a broad variety of semantic constraints in a
principled and scalable manner. We begin by defining an en-
tity matching problem that generalizes most current problem
settings that match entities in an unsupervised way, without
expensive training data. Next, we describe a broad variety
of semantic constraints that can be exploited in entity match-
ing. In contrast to prior works (e.g., (Dong et al. 2005)), the
constraints here can be both hard (i.e., must always be sat-
isfied) and soft (i.e., are likely to be satisfied). They can
also be aggregate constraints involving groups of mentions.
We show that all these types of constraints can be expressed
explicitly in a probabilistic framework.

We then describe and motivate a two-layer architecture for
entity matching. At the heart of the first layer is a generative
model on how data sets that satisfy constraints are gener-
ated. This model builds on the generative model recently
proposed in (Li, Morie, & Roth 2004), but significantly ex-
tends it to take into account the constraints, and to handle a
wide variety of attribute formats (see the section on gener-
ative model). We then develop a novel combination of the
EM algorithm and the relaxation labeling algorithm to per-
form matching. Briefly, the matching process is carried out
in multiple iterations. In each iteration the EM algorithm es-
timates the parameters of the generative model and a match-
ing assignment, then employs relaxation labeling to exploit
the constraints, to significantly improve the accuracy of the
above estimates. Relaxation labeling has been successfully

Homepage of Chen Li

Data mining, C. Li, D. Brown, AAAI-02
Ensemble learning, C. Li, Y. Lee, ICML-03

Title Authors Conf. Year
Entity matching Chen Y. Li, David Brown IJCAI 2001
Wrapper induction Chang Li, Jane Smith KDD 2002

Figure 1: A sample data set in the publication domain.

employed in computer vision, hypertext classification, and
ontology matching (e.g., (Chakrabarti, Dom, & Indyk 1998;
Doan et al. 2002)), but to our knowledge, not yet to entity
matching. The key advantage of relaxation labeling is that it
scales up to very large data sets and that it can accommodate
a wide range of domain constraints.

The first layer in effect “clusters” mentions into groups
(such that all matching mentions belong to the same group)
and exploits constraints at the group level. Once this is done,
the second layer exploits additional constraints at the level of
individual matching mention pair. This two-layer architec-
ture is in sharp contrast to prior works, which employ only
the first or the second layer. In this paper, we show that
exploiting constraints within a single layer architecture can
significantly reduce the matching accuracy.

Finally, we note that matching mentions is often just a first
step in a broader integration process. Once automatic match-
ing is done, users often want to examine the results, provide
feedback, and try out various “what-if” scenarios. As a side
benefit, our constraint exploitation framework enables a rel-
atively simple but effective method for such user interaction.
We model user feedback as “temporary” domain constraints,
then rerun relaxation labeling taking into account these con-
straints. Because relaxation labeling is guaranteed to be fast,
we can in effect provide an interactive setting for the users
to explore the matches. As far as we know, such fast inter-
active settings have not been considered in prior works on
entity matching. In the rest of the paper we describe our en-
tity matching solution. The full version of this paper can be
found at http://anhai.cs.uiuc.edu/home.

Problem Definition
Data Sets, Entities, Mentions, & Attributes: Let D be a
data set consisting of n documents d1, . . . , dn, where each
di is a text article or a relational database record. Let MD

be a set of mentions m1, . . . ,mk of real-world entities in
data set D. The entity matching problem is to find pairs of
mentions that match, that is, refer to the same entities.

For example, Figure 1 shows a simplified data set that
consists of three documents: a single text article and two
relational records. Examples of mentions include “Chang
Li” and “D. Brown” for persons, “AAAI” and “KDD” for
conferences, and “Ensemble learning” for papers. Given this
data set, our goal is to find out that “C. Li” matches “Chen
Y. Li”, “D. Brown” matches “David Brown”, and so on.

As the first step in exploiting constraints, we focus here on
the case of matching mentions of a single type of entity (e.g.,
persons). Our solution however generalizes to the more gen-
eral setting of matching multiple types of entities simultane-
ously. We assume that each mention is associated with a set
of attributes. Mentions of persons for example can be asso-
ciated with attributes such as title (e.g., “Mr.”, “Prof.”), first
name, last name, age, salary, address, etc. We then match
mentions by utilizing the values of their attributes.

c8 = The researcher with the name "Mayssam Saria" has fewer than five mentions in
DBLP (e.g., being a new graduate student with fewer than five papers).

Individual
c7 = If two citations match, then their authors will be matched in orderOrdering
c6 = Mentions in the PC listing (e.g. of a conference) refer to different researchers.Key/Uniqueness
c5 = If two mentions in the same document share similar names, they are likely to match.Layout
c4 = No researcher exists who has published in both HCI and numerical analysis.Incompatible
c3 = If authors X and Y share similar names and some co-authors, they are likely to matchNeighborhood

c2 = If a citation X from DBLP matches a citation Y in a homepage, then each author
mentioned in Y matches some author mentioned in X.

Subsumption
c1 = No researcher has published more than five AAAI papers in a year.Aggregate
ExampleType

Figure 2: A broad variety of constraints can be defined and ex-
ploited in entity matching.

It is important to emphasize that we do not deal with the
problem of extracting mentions and their attributes from text
or relational records. This problem has received much at-
tention in the AI, database, KDD, and WWW communities,
within the context of named entity recognition, information
extraction, and text segmentation (e.g., (Agichtein & Ganti
2004; Borkar, Deshmukh, & Sarawagi 2001; Freitag 1998)).
Hence, in this paper we focus on the problem of matching
mentions, given their attributes. Attribute values are string
or numeric, and can be missing for certain mentions.

Domain Constraints: To match mentions, we can of-
ten exploit a broad range of domain constraints. Figure 2
shows sample constraints in the publication domain. The
constraints can be either learned from the data, or specified
by a domain expert or user (Doan et al. 2003). This is done
only once, at the start of the matching process. They can
then be re-used across matching problems in the same do-
main. As Figure 2 shows, the constraints capture the user’s
knowledge about relationships among document layouts, or-
der of mentions, aggregate properties of real-world entities,
and semantic properties of database columns (e.g., a column
being a key means each of its mentions must refer to a dif-
ferent entity), among others. A constraint such as c1 = “no
researcher has published more than five AAAI papers in a
year” is hard in that it must be satisfied. In contrast, a con-
straint such as c5 = “if two mentions in the same document
share similar names, they are likely to match” is soft, in that
it is not always satisfied.

The constraints shown in Figure 2 are specific to the pub-
lication domain. However, similar constraints can be spec-
ified in many other domains as well. For example, in the
movie domain we can also specify an aggregate constraint
such as “no director has produced more than seven movies
in a single year”.

We model each constraint by specifying its effects on the
probability of a mention referring to a real-world entity.
For example, constraint c5 can be modeled as P (m = e|
∃ m′ st. [m & m′ are in the same document] ∧
[name(m) ≈ name(m′)] ∧ [m′ = e]) = 0.8, where m and
m′ are mentions in MD, and m = e means mention m refers
to real-world entity e. As another example, the constraint
“no person has age 2 and salary 200K” can be modeled as
P (m = e| [salary(m) = 200K] ∧ [∃ m′ st. (m′ =
e) ∧ (age(m′) = 2)]) = 0.

In general, each constraint ci is modeled as P (m =
e|fi(Om,m, e) = true) = pi, where Om is an assignment
of all mentions other than m to entities, and fi is a binary

function that describes a characteristic of this assignment.
Thus, a key distinguishing aspect of our work is that both

hard and soft constraints can be modeled in a uniform and
intuitive way, with well-defined probabilistic meaning (for
their “weights”). For a hard constraint, the probability of
m referring to e is 0 or 1, while for a soft constraint, it is a
value between 0 and 1. As we show below, this value can
be set by the user, based on his or her domain experience, or
learned in an unsupervised way from the same data set to be
matched.
The Mention Matching Problem: We now can define the
mention matching problem as follows: given a data set D
with MD mentions, find matching mention pairs, utilizing
the attributes a1, . . . , ak of the mentions, and taking into ac-
count a set of constraints c1, . . . , cl. This is a very general
problem setting that subsumes those in record linkage and
mention matching in text. Furthermore, while this problem
setting is unsupervised, in that it does not assume the avail-
ability of expensive annotated training data, the solution we
offer below can be generalized to supervised settings as well.

The CME Solution
We now describe mention matching with CME. This section
describes the first layer which employs a generative model
and exploits constraints in a “global manner” to match men-
tions. The next section describes the second layer which ex-
ploits constraints in a pairwise manner and user interaction
with CME.

The Generative Model
At the heart of the first layer is a model that generates data
sets to satisfy domain constraints as follows. To create a
data set D, a data creator generates document d1, then d2,
and so on. To generate d1, the creator randomly chooses a
number nume, then selects a set of nume entities E1 from
the set of all possible real-world entities E, according to a
probability P (E1). Next, for each entity e ∈ E1, he or she
randomly chooses a number numm, then generates numm

mentions. Each mention m is independently generated from
e according to a transformation probability P (m|e). The
mentions are then randomly “sprinkled” into document d1.
Once the data set D = {d1, . . . , dn} has been generated,
the creator checks if it satisfies the supplied constraints C =
{c1, . . . , cl}. If yes, then the data set is retained, otherwise
it is discarded, and the generation process is repeated until a
data set satisfying the constraints is created.

Constraint checking works as follows. The creator con-
siders each mention mi in D in a sequential order. Suppose
that constraints ci1, . . . , cit can apply to mi. Consider a con-
straint cij . Suppose it has a probability pij (i.e., of a mention
m referring to entity e, as described in the problem defini-
tion section). Then the creator decides with probability pij if
cij should apply to mention mi. If yes, then he or she checks
if cij is violated with respect to mi. If yes, then the dataset
D is considered violating the constraints, and is discarded.
D is considered not violating the constraints only if all of its
mentions do not violate any constraint.
Example 1 Figure 3 shows how a simplified data set of
two documents is generated. First, two entities e1 and e2

E

e1 e3
Chen Li Mike Brown

C. Y. Li

Mr. Brown Mike

e1 e2
Chen Li Chen Li

Chen Li

Chen C. Li

Figure 3: A sample generation process.

are selected. They both happen to be persons with name
“Chen Li”. Next, two mentions “Chen Li” and “Chen”
of e1 as well as a single mention “C. Li” of e2 are gener-
ated and sprinkled into the first document. The second doc-
ument is generated in a similar manner. Next, constraints
are checked. Suppose the only constraint is c5 shown in Fig-
ure 2, with associated probability 0.8. The creator now flips
a coin with probability 0.8 to decide if c5 should apply to
the first mention “Chen Li” in the first document. Suppose
it does. Then this mention violates the constraint, because
the mention “C. Li” in the same document shares a simi-
lar name, but refers to a different entity (e2 instead of e1).
The two documents are then discarded, and the generation
process repeats.

Mention Matching: From the above discussion, we can
list the parameters θ of the generative model as follows:

• a set of entities ED and a distribution P (ED) over it;

• probability distributions over nume and numm; we as-
sume these to be uniform over a small plausible range;

• mention-generation probabilities P (m|e); and

• probabilities p1, . . . , pl of the constraints c1, . . . , cl.

Let F be an assignment of mentions in D to entities, we
now can view matching mentions of D as the problem of
computing an optimal F ∗ and θ∗ such that P (D,F ∗|θ∗) is
maximized over all possible F and θ. Clearly, if we know
F ∗, then we can match mentions, since any two mentions
referring to the same entity match.

Learning the Generative Model
In practice, finding F ∗ and θ∗ is impractical, due to an expo-
nential number of possible assignments and model parame-
ters. Hence, we employ a variant of the EM algorithm to
iteratively estimate the above two, as follows:

(1) (Initialization): Let t = 0. Find an initial assignment F0,
which assigns each mention in D to a real-world entity.

(2) (Maximization): Compute model parameters
θt+1 = argmaxθ P (D, Ft|θ).

(3) (Expectation): Compute mention assignments
Ft+1 = argmaxF P (D, F |θt+1).

(4) (Convergence:) If [P (D, Ft+1|θt+1) − P (D, Ft|θt)] ≤ ε,
for a pre-specified ε, then stop and return Ft+1. Otherwise let
t = t + 1, and go back to Step 2.

We now describe these steps in detail.
Initialization: The initial assignment F0 assigns each men-
tion m ∈ MD to a distinct entity e.

Maximization: We compute θt+1 as follows. The set
of entities ED will be all entities that Ft maps the men-
tions in MD into. For example, if all mentions in MD

are assigned to five entities, then ED consists of those five.
For any set of entities E = {e1, . . . , eg}, we compute
P (E) = P (e1)P (e2) . . . P (eg), because each entity is cho-
sen independently of the others. Each P (ei) is computed as
the fraction of mentions in MD that refer to ei. Each proba-
bility pi of a constraint ci is approximated as the fraction of
mentions in MD that satisfy ci.

All that is left is to compute P (m|e). Let m = (a1 =
u1, . . . , ak = uk) and e = (a1 = v1, . . . , ak = vk), where
the ai are attributes (we will describe how to compute at-
tribute values for entities shortly). Then by making the sim-
plifying assumption of independence among the attributes,
we can compute P (m|e) = P (u1|v1) . . . P (uk|vk).

Computing P (ui|vi) poses a difficult modeling chal-
lenge, since in practice the values ui and vi can take on
a wide ranging number of formats. We solve this as fol-
lows. First, we assume that for each attribute ai we have
defined a distance function qi that computes the distance
between any two of its values. Numerous such distance
functions have been described in entity matching literature.
Next, we model P (ui|vi) as a variant of Gaussian distri-
bution over the distance qi(ui, vi): P (ui|vi) = 1√

π/2σi

·
exp (−qi(ui, vi)

2/σ2
i). Given the matching mention-entity

pairs {(m, e)}n
1 as specified by Ft, we compute the max-

imum likelihood estimation of σi as [

∑

(m,e)
qi(ui,vi)

2

n]1/2,
where ui and vi are the values of attribute ai of m and e,
respectively.

Finally, suppose only the mentions m1,m2,m3 are as-
signed to an entity e. Then we compute the value for at-
tribute ai of e as a function over the values for attribute ai

of m1,m2,m3. Currently we take the union of these values,
and found this method to work well empirically, although
more sophisticated “merging” functions are clearly possible,
if the distance functions can utilize them effectively.
Expectation: Next, we compute an optimal assignment
Ft+1 given the estimated model θt+1. Since the num-
ber of possible assignments is exponential, we employ a
greedy search in which we assign each mention m to en-
tity e that maximizes P (e|m). We can compute P (e|m) =
P (m|e)P (e)/P (m), using P (m|e) and P (e) as estimated
in the above maximization step. However, this estimation of
the true P (e|m) can be improved further, by exploiting the
domain constraints.

To exploit the constraints efficiently, we employ a well-
known local optimization procedure called relaxation la-
beling (see the introduction). This procedure iteratively
changes the probability of each mention referring an entity,
taking into account all constraints involving that mention. In
particular, we can write

P (m = e) =
∑

Om

P (m = e,Om)

=
∑

Om

P (m = e|Om)P (Om) (1)

where the sum is over all possible assignments Om of en-
tity to all mentions other than m. By making the simplify-
ing assumption that all entity-mention assignments are in-
dependent of one another, we can approximate P (Om) as
∏

(mi=ei)∈Om
P (mi = ei).

Now consider P (m = e|Om). Recall from the problem
definition section that we can model each constraint ci that
applies to m as P (m = e|fi(Om,m, e)) = pi. Thus, given
the constraints c1, . . . , cn that apply to m, we want to com-
pute P (m = e|Om) as P (m = e|f1, . . . , fn), the probabil-
ity of m referring to e, given the n constraints. We use the
sigmoid function σ(x) = 1/(1 + e−x), where x is a linear
combination of the features fk, to estimate the above prob-
ability. This function is widely used to combine multiple
sources of evidence (Agresti 1990); it does not require these
evidence sources to be independent of one another. Thus:

P (m = e|f1, . . . , fn) ∝ σ(α1 · f1 + · · · + αn · fn) (2)

where ∝ denotes “proportional to”. The weight αk is set so
that P (m = e|fk) = pk, to reflect the natural interpretation
that if ck is true, then m refers to e with probability pk. The
probabilities pk are learned in the maximization step. Thus,
the weights αk are also learned.

By substituting the various above formulae into Equa-
tion 1, we obtain

P (m = e) ∝
∑

Om

σ

(

n
∑

k=1

αkfk(Om,m, e)

)

×

∏

(mi=ei)∈Om

P (mi = ei) (3)

The proportionality constant is found by renormalizing the
probabilities.

Thus, the expectation step is carried out as follows. First,
we compute for each m and e the probability P (m = e) as
described in the maximization step. Next, we use Equation 3
to update each P (m|e), in effect “correcting” it using the
constraints. This repeats until the P (m|e) converge. Finally,
we assign m to e that maximizes P (e|m) ∝ P (m|e)P (e).

We have developed several methods to compute P (m =
e) in Equation 3 very fast, using dynamic programming.
We have also implemented several optimization techniques,
which ensure that relaxation labeling takes time only linear
in the number of mentions. We describe the details of these
optimizations in the full paper.

We note further that the above algorithm differs from the
traditional EM algorithm in several aspects. First, in the
expectation step we perform only a greedy, instead of ex-
pected, assignment. Second, the maximization step only
approximates the maximum-likelihood θ, instead of com-
puting it exactly, as in traditional EM. We found that these
simplifications speed up entity matching and still improve
matching accuracy significantly in our experiments.

Exploiting Pairwise Hard Constraints
The generative layer described above assumes that two men-
tions m1 and m2 match if they are assigned to the same
entity. Thus, assigning a set of mentions {m1, . . . ,mk} to

Constraints

Generative
Module

Pairwise
Module

User Relax Labeler

Figure 4: The CME architecture.

the same entity implies that every pair of mentions in that
set match. This strong implication can actually cause some
constraints to hurt overall matching accuracy.

To illustrate, suppose we have assigned mentions
m1, . . . ,m4 to entity e1. Suppose that only m1 really be-
longs to e1, and that m2 − m4 belong to e2. Now suppose
we apply a constraint ci to this set of mentions, and it can
only determine that m1 does not match m2. If we reassign
m2 to a different entity and leave the other mentions still as-
signed to e1, we will have removed one false positive, pair
(m1,m2), but introduced two new false negatives (m2,m3)
and (m2,m4). This problem arises because constraint ci

can only make a statement about the pair (m1,m2), and not
about any other pair. The result is that the increase in preci-
sion is offset by a larger drop in recall.

In general, constraints that only apply to a small subset of
pairs run into the danger that when applying them, the global
implications of the generative layer hurt overall matching
accuracy. To address this, we add a second layer that applies
hard constraints in a pairwise manner. Such a constraint ex-
amines a pair of mentions to determine if they could possibly
match (e.g., “a person mention with age 2 does not match a
person mention with salary 200K”).

The second layer conceptually examines all matching
pairs returned by the first layer, applies the pairwise hard
constraints to filter out false positives, then returns the final
matching pairs to the user. We have implemented several op-
timizations that enable the second layer to avoid examining
all matching pairs produced by the first layer.

It is important to note that all clustering-based matching
algorithms suffer from the problem describe above, and thus
can benefit from a pairwise constraint second layer. In the
experiment section we show that this two-layer architecture
improves matching accuracy over the traditional one-layer
architecture.
User Interaction: In CME, the user can examine the
matching pairs produced by the second layer, then pro-
vide some feedback to the system. We model the feed-
back as “temporary” constraints, and rerun the relaxation
labeling algorithm described earlier, taking into account all
constraints (including temporary ones). We then perform
pairwise constraint checking again, then output the revised
matching pairs to the user. The user can then provide feed-
back again. This process repeats until the user is satisfied.
The overall architecture of CME is shown in Figure 4. No-
tice that such user interaction is possible only if we have a
very fast method to exploit user feedback and return the re-
vised matches. Relaxation labeling provides such a method.

Empirical Evaluation
We now present experimental results that demonstrate the
utility of exploiting constraints within our framework for
mention matching.

Researchers:
Researcher mentions collected from home, group, conference, and DBLP homepages
Citations: <name, coauthors, title, conference, year>
Contains 4,991 mentions of 2388 distinct researchers, and 21776 correct matching pairs

IMDB:
Mentions of movies and people collected from IMDB records and text documents
People: <name, gender, birthdate, birthplace, deathdate, deathplace, movies>
Movies: <title, year, genre, runtime, language, country, director, color, rating, actors>
Contains 3889 movie mentions of 1200 distinct movies, and 25725 correct matching pairs

Figure 5: Characteristics of the data sets

.79 (.80/.79)

.78 (.78/.78)

.66 (.67/.65)
Researchers

.73 (.64/.83)

.72 (.63/.83)

.69 (.61/.79)
IMDB

Baseline + Relax + Pairwise
Baseline + Relax

Baseline
F1 (P / R)

Figure 6: Matching Accuracy

Data Sets: Figure 5 describes the two data sets in our
experiments. Researchers contains personal homepages,
group homepages, and pages from the CS Bibliography
DBLP. IMDB contains news articles from imdb.com as well
as the IMDB homepages of people and movies. We con-
verted each IMDB homepage into a structured record (see
Figure 5 for the record schemas). For each data set, we then
employed a combination of automatic and manual meth-
ods to mark up the mentions (researcher and movies, re-
spectively) and their attributes. Next, following common
research practice in entity matching (e.g., (Hernandez &
Stolfo 1995; Li, Morie, & Roth 2004)), we randomly per-
turbed the mentions and their attributes (e.g., adding mis-
spellings and abbreviations) to generate more ambiguity for
experimental purposes. Finally, we manually identified all
correct matching pairs, to be used for accuracy evaluation.
Constraints: For Researchers, we employed six con-
straints, including the subsumption, neighborhood, individ-
ual, layout, and incompatible constraints listed in Figure 2.
We also added an additional constraint that for conferences
that were mentioned rarely in our data set, researchers with
similar names who published in those conferences were
more likely to match. For IMDB, we employed three con-
straints: incompatible, neighborhood, and individual. We
describe the constraints in detail in the full paper.
Performance Measures: We employ the commonly used
metrics of precision, recall, and F-1 to measure perfor-
mance. Let Mp be the set of matching pairs that an al-
gorithm predicts. Let Ma be the set of all correct match-
ing pairs from the data set. Then, we compute precision
P = |Mp ∩ Ma|/|Mp|, recall R = |Mp ∩ Ma|/|Ma|, and
F-1 = (2P · R)/(P + R).
Matching Accuracy: Figure 6 shows the matching ac-
curacy of CME variants. The first row, “Baseline”, refers
to entity matching with the generative model (exploiting no
constraints). We note that this “baseline” algorithm in effect
implements a current state-of-the-art entity matching algo-
rithm (Li, Morie, & Roth 2004). The next row shows the
effects of adding relaxation labeling to exploit constraints.
The last row shows the effects of adding the pairwise con-
straint layer (i.e., the complete CME system).

The results show that for both domains, adding relaxation
labeling to exploit constraints (in the generative layer) im-

.66 (.67/.65)Baseline

.71 (.68/.74)+ Layout

.70 (.77/.64)+ Individual

.70 (.68/.72)+ Neighborhood

.67 (.68/.65)+ Subsumption

.66 (.67/.66)+ Rare Value

.71 (.62/.82)+ Individual

.70 (.62/.81)+ Neighborhood

.70 (.62/.79)+ Incompatible

.69 (.61/.79)Baseline

(a) (b)

Figure 7: The effects of individual constraints (in the generative
layer) on (a) Researchers and (b) IMDB datasets.

proves both precision and recall, resulting in a 12% F-1 in-
crease for Researchers. The F-1 accuracy for IMDB in-
creases less, by 3%. In IMDB, the cluster sizes are more
evenly distributed. Thus, when global constraints are ap-
plied, the changes are less pronounced compared to Re-
searchers. It is interesting to note that the constraints
we used manage to avoid a tradeoff between precision
and recall, and instead improves them both simultaneously.
Adding the pairwise constraint layer on top of the generative
layer further improves matching accuracy by 1%.

To evaluate the utility of the pairwise constraint layer, for
Researchers data set, we remove this layer and push all
of its constraints into the generative layer. This actually re-
duces the matching accuracy. While it improves precision to
77%, recall dropped significantly to 53%, resulting in an F-1
of 63%. This clearly demonstrates the necessity of enforc-
ing certain constraints as local pairwise constraints, which
avoids the strong implications that result when exploiting
them in the generative layer.
Effects of Individual Constraints: Figure 7 shows the ef-
fect of adding individual constraints in the generative layer.
The first row shows the accuracy of the baseline algorithm,
and each of the other rows show the accuracy of adding one
of the constraints in isolation. The results show that most
constraints make meaningful contributions to matching ac-
curacy. Note that since more than one constraint may apply
to a set of mentions, their effects may overlap. For example,
the improvement from applying the incompatible, neighbor-
hood, and individual constraints for IMDB are 1%, 1%, and
2%, respectively. However, the improvement from apply-
ing all three together is only 3% (Figure 6). This suggests
that some corrections from enforcing one constraint are also
brought about by other constraints.
Run Time: We found relaxation labeling to be very fast.
For most features, relaxation labeling took less than 12 sec-
onds per iteration on Researchers (7 seconds for IMDB).
With some optimizations, the algorithm runs in linear time
(in the number of mentions), suggesting that this method can
scale to large data sets, and enable an interactive tool for
users to dynamically add constraints.

Concluding Remarks
We have described an entity matching solution that can ex-
ploit a broad range of domain constraints to significantly
improve matching accuracy. The key novelties of the so-
lution include (a) well-defined probabilistic interpretation of
the constraints, (b) a significant extension of a previous gen-
erative model to handle constraints, (c) a novel combination
of EM and relaxation labeling algorithms to exploit con-
straints efficiently, and (d) a two-layer matching architec-

ture that further improves matching accuracy over existing
single-layer ones. Our experiments showed that exploiting
constraints improve F-1 accuracy by 3-12% on several real-
world data sets. A key direction for our future research is to
study how to learn constraints effectively from the current or
external data. References

Agichtein, E., and Ganti, V. 2004. Mining reference tables for
automatic text segmentation. In Proc. of KDD-04.
Agresti, A. 1990. Categorical Data Analysis. NY, Wiley.
Bhattacharya, I., and Getoor, L. 2004. Iterative record linkage for
cleaning and integration. In Proc. of SIGMOD DMKD Workshop.
Bilenko, M., and Mooney, R. J. 2003. Adaptive duplicate detec-
tion using learnable string similarity measures. In Proc. of KDD-
03.
Borkar, V.; Deshmukh, K.; and Sarawagi, S. 2001. Automatic
text segmentation for extracting structured records. In Proc. of
SIGMOD-01.
Chakrabarti, S.; Dom, B.; and Indyk, P. 1998. Enhanced Hyper-
text Categorization Using Hyperlinks. In Proc. of SIGMOD-98.
Cohen, W., and Richman, J. Learning to match and cluster entity
names. In Proc. of SIGKDD-02.
Cohen, W.; Ravikumar, P.; and Fienberg, S. 2003. A comparison
of string metrics for name-matching tasks. In IIWeb Workshop
2003.
Cohen, W. 1998. Integration of heterogeneous databases without
common domains using queries based on textual similarity. In
Proc. of SIGMOD-98.
Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A. 2002.
Learning to map ontologies on the Semantic Web. In Proc. of
WWW-02.
Doan, A.; Lu, Y.; Lee, Y.; and Han, J. 2003. Profile-based object
matching for information integration. IEEE Intelligent Systems
18(5):54–59.
Dong, X.; Halevy, A.; Madhavan, J.; and Nemes, S. 2005. Ref-
erence reconciliation in complex information spaces. In Proc. of
SIGMOD-05.
Freitag, D. 1998. Multistrategy learning for information extrac-
tion. In Proc. of ICML-98.
Hernandez, M., and Stolfo, S. 1995. The merge/purge problem
for large databases. In Proc. of SIGMOD-95.
Li, X.; Morie, P.; and Roth, D. 2004. Identification and tracing of
ambiguous names: Discriminative and generative approaches. In
Proc. of AAAI-04.
McCallum, A.; Nigam, K.; and Ungar, L. Efficient clustering of
high-dimensional data sets with application to reference match-
ing. In Proc. of SIGKDD-00.
Parag, and Domingos, P. 2004. Multi-relational record linkage.
In Proc. of the KDD Workshop on Multi-Relational Data Mining.
Pasula, H.; Marthi, B.; Milch, B.; Russell, S.; and Shpitser, I.
2003. Identity uncertainty and citation matching. In Proc. of
NIPS-03.
Ravikumar, P., and Cohen, W. 2004. A hierarchical graphical
model for record linkage. In Proc. of UAI-04.
Tejada, S.; Knoblock, C.; and Minton, S. 2002. Learning domain-
independent string transformation weights for high accuracy ob-
ject identification. In Proc. of KDD-02.
Wellner, B.; McCallum, A.; Peng, F.; and Hay, M. 2004. An in-
tegrated, conditional model of information extraction and coref-
erence with application to citation matching. In Proc. of UAI-04.

